1. An electron in energy level $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ can:
(A) only emit a photon.
(B) only absorb a photon.
(C) either emit, or absorb a photon.
(D) neither emit, nor absorb a photon.
(E) (Unsure/guessing/lost/help!)
2. An electron moving between energy levels $\left[\begin{array}{l}2 \rightarrow 4 \\ 4 \rightarrow 2\end{array}\right]$ must:
(A) emit a photon.
(B) absorb a photon.

(C) (Both of the above choices.)
(D) (Neither of the above choices.)
(E) (Unsure/guessing/lost/help!)
3. The energy of a photon emitted from moving between energy levels $2 \rightarrow 1$ is \qquad the energy absorbed moving between energy levels $2 \rightarrow 3$.
(A) greater than.
(B) exactly equal to.
(C) less than.
(D) (Unsure/guessing/lost/help!)
4. The energy of a photon emitted from moving between energy levels $4 \rightarrow 2$ is \qquad the energy absorbed moving between energy levels $2 \rightarrow 4$.
(A) greater than.
(B) exactly equal to.
(C) less than.
(D) (Unsure/guessing/lost/help!)
5. A photon with $\left[\begin{array}{l}\text { slightly more than the } \\ \text { the exact amount of } \\ \text { slightly less than the }\end{array}\right]$ energy required for an electron to move between energy levels $1 \rightarrow 2$ would:
(A) be absorbed, causing the electron to move between energy levels $1 \rightarrow 2$.
(B) not be absorbed, such that the electron stays in energy level 1.
(C) (Unsure/guessing/lost/help!)
6. Which diagram below schematically shows a $\left.\begin{array}{l}\text { star moving to the left } \\ \text { star moving to the right } \\ \text { stationary star }\end{array}\right]$?

(D) (Unsure/guessing/lost/help!)
7. In the cartoon shown at right ${ }^{1}$, these astronomers are discussing a star that is:
(A) moving towards them.
(B) moving away from them.
(C) stationary.
(D) (Unsure/guessing/lost/help!)

"Oh, oh — looks like a blue shift."
[^0]8. According to Kirchhoff's laws,___ creates a(n) $\left[\begin{array}{l}\text { continuous } \\ \text { absorption } \\ \text { emission }\end{array}\right]$ spectrum.
(A) a hot dense object.
(B) diffuse, hot gas atoms.
(C) the Doppler effect.
(D) blackbody radiation passing through diffuse, cool gas atoms.
(E) (Unsure/guessing/lost/help!)
9. $\left[\begin{array}{l}\text { The sun's photosphere } \\ \text { The sun's chromosphere } \\ \text { A sunspot }\end{array}\right]$ gives off $a(n) _$spectrum.
(A) continuous.
(B) absorption.
(C) emission.
(D) (None of the above choices.)
(E) (Unsure/guessing/lost/help!)
10. $\left[\begin{array}{l}\text { The sun's photosphere } \\ \text { The sun's chromosphere } \\ \text { A sunspot }\end{array}\right]$ gives off light from:
(A) electrons moving to lower energy orbitals.
(B) hot, agitated electrons and atoms.
(C) tangling and rearranging magnetic field loops.
(D) convection currents.
(E) (Unsure/guessing/lost/help!)
11. Which of these spectra will have the $\left[\begin{array}{l}\text { least } \\ \text { most }\end{array}\right\rfloor$ absorption lines?
(A) The sun, observed from a spacecraft in orbit around Earth.
(B) The sun, observed from a telescope at sea level.
(C) Light from an incandescent light bulb, across the room.
(D) (Unsure/guessing/lost/help!)
12. In the cartoon shown at right ${ }^{2}$, Professor Phostle is showing Tintin bright lines on a dark background, which could be an example of $a(n)$ \qquad spectrum.
(A) continuous.
(B) absorption.
(C) emission.
(D) (None of the above choices.)
(E) (Unsure/guessing/lost/help!)

13. Which absorption spectrum corresponds to a star moving $\left\lfloor\begin{array}{l}\text { towards } \\ \text { away from }\end{array}\right\rfloor$ Earth?
(The arrows indicate the expected wavelength values for a stationary star of the same type.)

[^1]14. A star that is observed to have a parallax angle $\left[\begin{array}{l}\text { smaller than } \\ \text { equal to } \\ \text { larger than }\end{array}\right] 1$ arc second is located
\qquad 1 parsec away.
(A) closer than.
(B) exactly.
(C) farther than.
(D) (Unsure/guessing/lost/help!)

Apparent magnitude m is the measure of a star's brightness, as seen from Earth.
Absolute magnitude \mathscr{M} is the measure of a star's brightness, if placed exactly 10 parsecs away from Earth.

	\boldsymbol{m} apparent magnitude	\mathscr{M} absolute magnitude
	-27	+5
The sun	-1	-3
Canopus	0	+0.5
Vega	0	+11
Kapteyn's star	+9	

15. Which star
$\left[\begin{array}{l}\text { seems brightest, as seen from Earth } \\ \text { seems dimmest, as seen from Earth } \\ \text { is brightest, if placed } 10 \text { parsecs from Earth } \\ \text { is dimmest, if placed } 10 \text { parsecs from Earth } \\ \text { is nearest to Earth } \\ \text { is farthest from Earth }\end{array}\right]$?
(A) The sun.
(B) Canopus.
(C) Vega.
(D) Kapteyn's star.
(E) (Unsure/guessing/lost/help!)

	\boldsymbol{m} apparent magnitude	M absolute magnitude
	+0.1	-7
Rigel	+0.4	-6
Betelgeuse	+0.4	+3
Procyon A	+0.4	

16. Which star
$\left[\begin{array}{l}\text { seems brightest, as seen from Earth } \\ \text { seems dimmest, as seen from Earth } \\ \text { is brightest, if placed } 10 \text { parsecs from Earth } \\ \text { is dimmest, if placed } 10 \text { parsecs from Earth } \\ \text { is nearest to Earth } \\ \text { is farthest from Earth }\end{array}\right]$?
(A) Rigel.
(B) Betelgeuse.
(C) Procyon A.
(D) (There is a tie.)
(E) (Unsure/guessing/lost/help!)

	\mathbf{m} apparent magnitude	\mathscr{M} absolute magnitude
	+0.9	-5
Antares	+1.2	+1.1
Pollux	+1.1	+1.9
Fomalhaut	+1.5	+1.4
Sirius A	-1.2	

17. How far is $\left.\left\lvert\, \begin{array}{l}\text { Antares } \\ \text { Pollux } \\ \text { Fomalhaut } \\ \text { Sirius A }\end{array}\right.\right\rfloor$ from Earth?
(A) Farther than 10 parsecs.
(B) Exactly 10 parsecs.
(C) Closer than 10 parsecs.
(D) (Not enough information is given.)
(E) (Unsure/guessing/lost/help!)
18.

\ldots is $\left[\begin{array}{l}\text { the hottest } \\ \text { the coolest } \\ \text { not a }\end{array}\right]$ blackbody color (of a hot, glowing dense object).
(A) Red.
(B) Orange.
(C) Yellow.
(D) Green.
(E) Blue.
(F) White.
(G) (Unsure/guessing/lost/help!)
19. A white dwarf is known to be smaller than a main-sequence star that has the same whitehot color because the white dwarf is:
(A) less luminous than the main-sequence star.
(B) cooler than the main-sequence star.
(C) (Both of the above choices.)
(D) (Unsure/guessing/lost/help!)

	Luminosity $=$		Size
	\times	Temp. ${ }^{4}$	
White dwarf			
White m.s.			

20. A main-sequence star will be \qquad compared to a giant that has the same luminosity.
(A) smaller and cooler.
(B) smaller and hotter.
(C) larger and cooler.
(D) larger and hotter.
(E) (Unsure/guessing/lost/help!)

| | Luminosity $=$ | | Size |
| :--- | :--- | :--- | :--- |\times Temp. 4.

21. A supergiant will be \qquad compared to a giant that has the same size.
(A) dimmer and cooler.
(B) dimmer and hotter.
(C) brighter and cooler.
(D) brighter and hotter.
(E) (Unsure/guessing/lost/help!)

	Luminosity $=$		Size	\times
Temp. ${ }^{4}$				
Supergiant				
Giant				

22. Which star is the $\left|\begin{array}{l}\text { hottest } \\ \text { most luminous } \\ \text { largest } \\ \text { coolest } \\ \text { least luminous } \\ \text { smallest }\end{array}\right|$?
(A) O 5 main-sequence star.
(B) A0 main-sequence star.
(C) G0 supergiant.
(D) M5 main-sequence star.
(E) (Unsure/guessing/lost/help!)
23. Which stars are the $\left\lfloor\begin{array}{l}\text { most } \\ \text { least }\end{array}\right\rfloor$ massive?
(A) Supergiants and giants.
(B) Upper-main-sequence stars.
(C) Lower-main-sequence stars (red dwarfs).
(D) White dwarfs.
(E) (Unsure/guessing/lost/help!)
24. Which stars obey a mass-luminosity relation (the more massive a star is, the more luminous it is)?
(A) Supergiants and giants.
(B) Main-sequence stars.
(C) White dwarfs.
(D) (Two of the above choices.)
(E) (All of the above choices.)
(F) (None of the above choices.)
(G) (Unsure/guessing/lost/help!)
25. Which stars are the $\left\lfloor\begin{array}{l}\text { most } \\ \text { least }\end{array}\right\rfloor$ dense?
(A) Supergiants and giants.
(B) Upper-main-sequence stars.
(C) Lower-main-sequence stars (red dwarfs).
(D) White dwarfs.
(E) (Unsure/guessing/lost/help!)
26. Which stars are the most common, $\left\lfloor\begin{array}{l}\text { as seen from Earth with the naked eye } \\ \text { if you surveyed only the nearest stars }\end{array}\right\rfloor$?
(A) Luminous stars, such as supergiants, giants, and upper-main-sequence stars.
(B) Faint stars, such as lower-main-sequence stars (red dwarfs), and white dwarfs.
(C) (There is a tie.)
(D) (Unsure/guessing/lost/help!)
27. $\left\lfloor\begin{array}{l}\text { Red dwarfs are not common } \\ \text { Giants and supergiants are very common }\end{array}\right\rfloor$ in the night sky, as seen from Earth with the naked eye, because they:
(A) are visible from very far away.
(B) have long main-sequence lifetimes.
(C) are much closer than 10 parsecs.
(D) have low luminosities.
(E) (Unsure/guessing/lost/help!)
28. The $\left[\begin{array}{l}\text { most } \\ \text { least }\end{array}\right\rfloor$ common stars in the night sky, visible to the naked eye on Earth, are located \qquad , and have \qquad luminosities.
(A) nearby; bright.
(B) nearby; dim.
(C) far away; bright.
(D) far away; dim.
29. The $\left[\begin{array}{l}\text { distances to } \\ \text { sizes of } \\ \text { masses of } \\ \text { densities of }\end{array}\right]$ stars are found from:
(A) absorption line widths.
(B) observing parallax.
(C) how they move in binary system orbits.
(D) colors and luminosities.
(E) (Unsure/guessing/lost/help!)

[^0]: ${ }^{1}$ Sidney Harris, Einstein Simplified: Cartoons on Science, Rutgers University Press, 1989.

[^1]: ${ }^{2}$ Hergé, The Shooting Star, Little, Brown Young Readers, 1978.

