- **1**. An electron in energy level $\begin{vmatrix} 1 \\ 2 \end{vmatrix}$ can:
 - (A) only emit a photon.
 - (B) only absorb a photon.
 - (C) either emit, or absorb a photon.
 - (D) neither emit, nor absorb a photon.
 - (E) (Unsure/guessing/lost/help!)
- 2. An electron moving between energy levels $\begin{bmatrix} 2 \rightarrow 4 \\ 4 \rightarrow 2 \end{bmatrix}$ must:
 - (A) emit a photon.
 - (B) absorb a photon.
 - (C) (Both of the above choices.)
 - (D) (Neither of the above choices.)
 - (E) (Unsure/guessing/lost/help!)

- 3. The energy of a photon emitted from moving between energy levels $2\rightarrow 1$ is ______ the energy absorbed moving between energy levels $2\rightarrow 3$.
 - (A) greater than.
 - (B) exactly equal to.
 - (C) less than.
 - (D) (Unsure/guessing/lost/help!)
- 4. The energy of a photon emitted from moving between energy levels $4\rightarrow 2$ is ______ the energy absorbed moving between energy levels $2\rightarrow 4$.
 - (A) greater than.
 - (B) exactly equal to.
 - (C) less than.
 - (D) (Unsure/guessing/lost/help!)

slightly more than the

5. A photon with the exact amount of slightly less than the

energy levels $1 \rightarrow 2$ would:

- (A) be absorbed, causing the electron to move between energy levels $1 \rightarrow 2$.
- (B) not be absorbed, such that the electron stays in energy level 1.
- (C) (Unsure/guessing/lost/help!)

^oermitted energy levels

5

4 3 6. Which diagram below schematically shows a star moving to the left star moving to the right ? stationary star

- 7. In the cartoon shown at right¹, these astronomers are discussing a star that is:
 - (A) moving towards them.
 - (B) moving away from them.
 - (C) stationary.
 - (D) (Unsure/guessing/lost/help!)

"Oh, oh - looks like a blue shift."

¹ Sidney Harris, *Einstein Simplified: Cartoons on Science*, Rutgers University Press, 1989.

			continuous	
8.	According to Kirchhoff's laws,	_ creates a(n)	absorption	spectrum.
			emission	

- (A) a hot dense object.
- (B) diffuse, hot gas atoms.
- (C) the Doppler effect.
- (D) blackbody radiation passing through diffuse, cool gas atoms.
- (E) (Unsure/guessing/lost/help!)

The sun's photosphere

The sun's chromosphere gives off a(n) ______ spectrum. 9. A sunspot

- (A) continuous.
- (B) absorption.
- (C) emission.
- (D) (None of the above choices.)
- (E) (Unsure/guessing/lost/help!)
- The sun's photosphere
- The sun's chromosphere gives off light from: **10**.

A sunspot

- (A) electrons moving to lower energy orbitals.
- (B) hot, agitated electrons and atoms.
- (C) tangling and rearranging magnetic field loops.
- (D) convection currents.
- (E) (Unsure/guessing/lost/help!)
- **11**. Which of these spectra will have the $\begin{vmatrix} \text{least} \\ \text{most} \end{vmatrix}$ absorption lines?
 - (A) The sun, observed from a spacecraft in orbit around Earth.
 - (B) The sun, observed from a telescope at sea level.
 - (C) Light from an incandescent light bulb, across the room.
 - (D) (Unsure/guessing/lost/help!)

- In the cartoon shown at right², Professor Phostle is showing Tintin bright lines on a dark background, which could be an example of a(n) ______ spectrum.
 - (A) continuous.
 - (B) absorption.
 - (C) emission.
 - (D) (None of the above choices.)
 - (E) (Unsure/guessing/lost/help!)

(The arrows indicate the expected wavelength values for a stationary star of the same type.)

² Hergé, *The Shooting Star*, Little, Brown Young Readers, 1978.

		smaller than	
14 .	A star that is observed to have a parallax angle	equal to	1 arc second is located
		larger than	

- ____1 parsec away.
- (A) closer than.
- (B) exactly.
- (C) farther than.
- (D) (Unsure/guessing/lost/help!)

Apparent magnitude m is the measure of a star's brightness, as seen from Earth.

Absolute magnitude \mathcal{M} is the measure of a star's brightness, if placed exactly 10 parsecs away from Earth.

	<i>m</i> apparent magnitude	M absolute magnitude
The sun	-27	+5
Canopus	-1	-3
Vega	0	+0.5
Kapteyn's star	+9	+11

		seems brightest, as seen from Earth seems dimmest, as seen from Earth	n
15	W/h . h . et a u	is brightest, if placed 10 parsecs from Earth	0
15.	which star	is dimmest, if placed 10 parsecs from Earth	?
		is nearest to Earth	
		is farthest from Earth	

- (A) The sun.
- (B) Canopus.
- (C) Vega.
- (D) Kapteyn's star.
- (E) (Unsure/guessing/lost/help!)

	<i>m</i> apparent magnitude	M absolute magnitude
Rigel	+0.1	-7
Betelgeuse	+0.4	-6
Procyon A	+0.4	+3

		seems brightest, as seen from Earth	?
	Which star	seems dimmest, as seen from Earth	
16		is brightest, if placed 10 parsecs from Earth	
10.		is dimmest, if placed 10 parsecs from Earth	
		is nearest to Earth	
		is farthest from Earth	

- (A) Rigel.
- (B) Betelgeuse.
- (C) Procyon A.
- (D) (There is a tie.)
- (E) (Unsure/guessing/lost/help!)

	<i>m</i> apparent magnitude	M absolute magnitude
Antares	+0.9	-5
Pollux	+1.2	+1.1
Fomalhaut	+1.1	+1.9
Sirius A	-1.5	+1.4

- (A) Farther than 10 parsecs.
- (B) Exactly 10 parsecs.
- (C) Closer than 10 parsecs.
- (D) (Not enough information is given.)
- (E) (Unsure/guessing/lost/help!)

		the hottest	
18 .	is	the coolest	blackbody color (of a hot, glowing dense object).
		not a	

- (A) Red.
- (B) Orange.
- (C) Yellow.
- (D) Green.
- (E) Blue.
- (F) White.
- (G) (Unsure/guessing/lost/help!)
- 19. A white dwarf is known to be smaller than a main-sequence star that has the same whitehot color because the white dwarf is:
 - (A) less luminous than the main-sequence star.
 - (B) cooler than the main-sequence star.
 - (C) (Both of the above choices.)
 - (D) (Unsure/guessing/lost/help!)

	Luminosity =	=	Size	×	Temp. ⁴
White dwarf					
White m.s.					

- 20. A main-sequence star will be _____ compared to a giant that has the same luminosity.
 - (A) smaller and cooler.
 - (B) smaller and hotter.
 - (C) larger and cooler.
 - (D) larger and hotter.
 - (E) (Unsure/guessing/lost/help!)

	Luminosity =	= Size	Х	Temp. ⁴
M.s. star				
Giant				

- 21. A supergiant will be ______ compared to a giant that has the same size.
 - (A) dimmer and cooler.
 - (B) dimmer and hotter.
 - (C) brighter and cooler.
 - (D) brighter and hotter.
 - (E) (Unsure/guessing/lost/help!)

	Luminosity :	= Size	e ×	⊂ Temp.4
Supergiant				
Giant				

- (A) O5 main-sequence star.
- (B) A0 main-sequence star.
- (C) G0 supergiant.
- (D) M5 main-sequence star.
- (E) (Unsure/guessing/lost/help!)

23. Which stars are the
$$\begin{bmatrix} most \\ least \end{bmatrix}$$
 massive?

- (A) Supergiants and giants.
- (B) Upper-main-sequence stars.
- (C) Lower-main-sequence stars (red dwarfs).
- (D) White dwarfs.
- (E) (Unsure/guessing/lost/help!)

- 24. Which stars obey a mass-luminosity relation (the more massive a star is, the more luminous it is)?
 - (A) Supergiants and giants.
 - (B) Main-sequence stars.
 - (C) White dwarfs.
 - (D) (Two of the above choices.)
 - (E) (All of the above choices.)
 - (F) (None of the above choices.)
 - (G) (Unsure/guessing/lost/help!)

25. Which stars are the
$$\begin{bmatrix} most \\ least \end{bmatrix}$$
 dense?

- (A) Supergiants and giants.
- (B) Upper-main-sequence stars.
- (C) Lower-main-sequence stars (red dwarfs).
- (D) White dwarfs.
- (E) (Unsure/guessing/lost/help!)
- **26**.

Which stars are the most common, as seen from Earth with the naked eye if you surveyed only the nearest stars?

- (A) Luminous stars, such as supergiants, giants, and upper-main-sequence stars.
- (B) Faint stars, such as lower-main-sequence stars (red dwarfs), and white dwarfs.
- (C) (There is a tie.)
- (D) (Unsure/guessing/lost/help!)
- Red dwarfs are not common 27.

in the night sky, as seen from Earth with the Giants and supergiants are very common

naked eye, because they:

- (A) are visible from very far away.
- (B) have long main-sequence lifetimes.
- (C) are much closer than 10 parsecs.
- (D) have low luminosities.
- (E) (Unsure/guessing/lost/help!)

28. The $\begin{bmatrix} most \\ least \end{bmatrix}$ common stars in the night sky, visible to the naked eye on Earth,

are located _____, and have _____ luminosities.

- (A) nearby; bright.
- (B) nearby; dim.
- (C) far away; bright.
- (D) far away; dim.

29. The $\begin{bmatrix} \text{distances to} \\ \text{sizes of} \\ \text{masses of} \\ \text{densities of} \end{bmatrix}$ stars are found from:

- (A) absorption line widths.
- (B) observing parallax.
- (C) how they move in binary system orbits.
- (D) colors and luminosities.
- (E) (Unsure/guessing/lost/help!)