A proton $\left(+1.602 \times 10^{-19} \mathrm{C}\right)$ and an electron $\left(-1.602 \times 10^{-19} \mathrm{C}\right)$ lie along the x-axis. The proton is at the origin, and the electron is at $x=+0.0529 \mathrm{~nm}$, approximating the ground state of a hydrogen atom.

1. The electric potential energy of these two charges is:
(A) negative.
(B) zero.
(C) positive.
(D) (Unsure/guessing/lost/help!)
2. If the separation distance between these two charges increases, the electric potential energy:
(A) decreases (becomes a smaller positive number).
(B) decreases (becomes a larger negative number).
(C) remains constant.
(D) increases (becomes a larger positive number).
(E) increases (becomes a smaller negative number).
(F) (Unsure/guessing/lost/help!)

Two protons $\left(+1.602 \times 10^{-19} \mathrm{C}\right)$ along the x-axis, one at the origin, and the other at $x=+1 \mathrm{fm}$, approximate the nucleus of a helium atom (with two neutrons, which
 can be ignored).
3. The electric potential energy of these two charges is:
(A) negative.
(B) zero.
(C) positive.
(D) (Unsure/guessing/lost/help!)
4. If the separation distance between the two protons increases, the electric potential energy:
(A) decreases (becomes a smaller positive number).
(B) decreases (becomes a larger negative number).
(C) remains constant.
(D) increases (becomes a larger positive number).
(E) increases (becomes a smaller negative number).
(F) (Unsure/guessing/lost/help!)

+4.0 nC charge at the origin, and $\mathrm{a}+1.0 \mathrm{nC}$ charge at $x=+2.0 \mathrm{~cm}$.
Two +2.0 nC charges, at the origin and at $x=+2.0 \mathrm{~cm}$.

5. The \qquad have the greater amount of electric potential energy.
(A) +4.0 nC charge and +1.0 nC charge.
(B) two +2.0 nC charges.
(C) (There is a tie.)
(D) (Unsure/guessing/lost/help!)
6. Moving the \qquad 1.0 cm closer would require more work by an external agent.
(A) +4.0 nC charge and +1.0 nC charge.
(B) two +2.0 nC charges.
(C) (There is a tie.)
(D) (Unsure/guessing/lost/help!)

Two point charges lie along the x-axis. A $+5.0 \mu \mathrm{C}$ charge is at the origin, and a $-2.0 \mu \mathrm{C}$ charge is at $x=+5.0 \mathrm{~m}$.

7. Which process would require more work by an external agent?
(A) Holding the $+5.0 \mu \mathrm{C}$ charge fixed, while moving the $-2.0 \mu \mathrm{C}$ charge very far away.
(B) Holding the $-2.0 \mu \mathrm{C}$ charge fixed, while moving the $+5.0 \mu \mathrm{C}$ charge very far away.
(C) (There is a tie.)
(D) (Unsure/guessing/lost/help!)
8. In general, if the distance between any two charges with $\left[\begin{array}{l}\text { the same } \\ \text { opposite }\end{array}\right]$ signs $\left[\begin{array}{l}\text { increases } \\ \text { decreases }\end{array}\right]$, the electric potential energy:
(A) decreases (becomes a smaller positive number).
(B) decreases (becomes a larger negative number).
(C) remains constant.
(D) increases (becomes a larger positive number).
(E) increases (becomes a smaller negative number).
(F) (Unsure/guessing/lost/help!)

Consider two sets of point charges fixed at the origin,

9. Rank the locations from lowest electric potential (greatest negative value) to highest electric potential (greatest positive value). Indicate ties, if any.

(lowest V)

$\overline{\text { (highest } V \text {) }}$

Now consider the following processes:
Moving from location $(A) \rightarrow(B)$.
Moving from location $(B) \rightarrow(A)$.
Moving from location (C) $\rightarrow(\mathrm{D})$.
Moving from location (D) \rightarrow (C).
10. Identify the process(es) (if any) where the value of the electric potential would decrease.

Process(es):
11. Identify the process(es) (if any) where a positive test charge would experience a decrease in electric potential energy.

Positive test charge process(es):
12. Identify the process(es) (if any) where a negative test charge would experience a decrease in electric potential energy.

Negative test charge process(es):

Two different batteries are each connected to a capacitor (two parallel metal plates) that is initially uncharged. As a result, these plates of these capacitors become charged. Locations (A)-(D) are located between the charged capacitor plates.

Consider the following processes:
Moving from location $(A) \rightarrow(B)$.
Moving from location $(B) \rightarrow(A)$.
Moving from location (C) $\rightarrow(\mathrm{D})$.
Moving from location (D) \rightarrow (C).
13. Identify the process(es) (if any) where the value of the electric
potential would decrease.
Process(es):

14. Identify the process(es) (if any) where a positive test charge would experience a decrease in electric potential energy.

Positive test charge process(es):
15. Identify the process(es) (if any) where a negative test charge would experience a decrease in electric potential energy.

Negative test charge process(es):

Three different parallel plate capacitors are each connected to identical 9.0 V batteries.
Capacitors (A) and (B) have the same area; capacitors (B) and (C) have the same separation distance.

16. Rank the capacitors from lowest to highest capacitance value. Indicate ties, if any.

17. Rank the capacitors from least to greatest amount of charge stored. Indicate ties, if any.

18. Rank the capacitors from least to greatest amount of electric potential energy stored. Indicate ties, if any.
(most EPE)
19. $\left[\begin{array}{l}\text { Increasing } \\ \text { Decreasing }\end{array}\right]$ the $\left[\begin{array}{l}\text { separation gap } \\ \text { area }\end{array}\right\rfloor$ of a parallel plate capacitor would \qquad its capacitance.
(A) increase.
(B) decrease.
(C) remain constant.
(D) (Not enough information is given.)
(E) (Unsure/guessing/lost/help!)
20. $\left[\begin{array}{l}\text { Increasing } \\ \text { Decreasing }\end{array}\right]$ the charge on a capacitor is would \qquad its $\left\lfloor\begin{array}{l}\text { potential difference } \\ \text { capacitance } \\ \text { energy stored }\end{array}\right\rfloor$.
(A) increase.
(B) decrease.
(C) remain constant.
(D) (Not enough information is given.)
(E) (Unsure/guessing/lost/help!)
21. $\left[\begin{array}{l}\text { Increasing } \\ \text { Decreasing }\end{array}\right]$ the potential difference of a capacitor would___ its $\left.\begin{array}{l}\text { charge } \\ \text { capacitance } \\ \text { energy stored }\end{array}\right]$.
(A) increase.
(B) decrease.
(C) remain constant.
(D) (Not enough information is given.)
(E) (Unsure/guessing/lost/help!)

Two parallel plate capacitors have the same area, and same separation gaps, but different amounts of charge.

22. The parallel plate capacitor with \qquad charge has $\left[\begin{array}{l}\text { a greater potential difference } \\ \text { more energy stored }\end{array}\right]$.
(A) more.
(B) less.
(C) (There is a tie.)
(D) (Not enough information is given.)
(E) (Unsure/guessing/lost/help!)

Two parallel plate capacitors have the same area, and same charge, but different separation gaps.
23. The parallel plate capacitor with the \qquad separation gap has $\left[\begin{array}{l}\text { a greater potential difference } \\ \text { more energy stored }\end{array}\right]$.

(A) narrower.
(B) wider.
(C) (There is a tie.)
(D) (Not enough information is given.)
(E) (Unsure/guessing/lost/help!)

Two parallel plate capacitors have the same area, and same separation gaps, but different potential differences, and each has an unknown amount of charge.
24. The parallel plate capacitor with the \qquad potential difference has more $\left[\begin{array}{l}\text { charge } \\ \text { energy stored }\end{array}\right]$.

(A) greater.
(B) lesser.
(C) (There is a tie.)
(D) (Not enough information is given.)
(E) (Unsure/guessing/lost/help!)
25. A parallel plate capacitor is charged to a set potential difference by a battery, which is then disconnected. Afterwards, the parallel plates are separated a little more.

While the parallel plates are separating, the $\left.\begin{array}{l}\text { capacitance } \\ \text { charge } \\ \text { potential difference } \\ \text { energy stored }\end{array}\right\rfloor$ will:
(A) increase.
(B) decrease.
(C) remain constant.
(D) (Not enough information is given.)
(E) (Unsure/guessing/lost/help!)
26. A parallel plate capacitor is connected to a battery that supplies a constant potential difference. While the battery is still attached, the parallel plates are separated a little more.

While the parallel plates are separating, the $\left.\begin{array}{l}\text { capacitance } \\ \text { charge } \\ \text { potential difference } \\ \text { energy stored }\end{array}\right\rfloor$ will:
(A) increase.
(B) decrease.
(C) remain constant.
(D) (Not enough information is given.)
(E) (Unsure/guessing/lost/help!)

In these series circuits below, 9.0 V batteries and/or 1.5 V batteries, are wired to 0.50Ω light bulbs and/or 2.0Ω resistors. All circuit elements and wires are ideal.

27. Rank the circuits from lowest to highest equivalent emf. Indicate ties, if any.

$$
\overline{(\text { lowest } \mathscr{E})} \quad \overline{\text { (highest } \mathscr{E})}
$$

28. Rank the circuits from lowest to highest equivalent resistance. Indicate ties, if any.

29. Rank the circuits from least to greatest amount of current flowing through it. Indicate ties, if any.
$\overline{\text { (least } I)} \overline{\text { (greatest } I)}$

In these series and parallel circuits below, 9.0 V batteries are wired to 0.50Ω light bulbs and/or 2.0Ω resistors. All circuit elements and wires are ideal.

30. Rank the circuits from lowest to highest equivalent resistance. Indicate ties, if any.

$$
\overline{\left(\text { lowest } R_{e q}\right)} \square \quad \square \quad \overline{\text { (highest } \left.R_{e q}\right)}
$$

31. Rank the circuits from least to greatest amount of current flowing through the battery. Indicate ties, if any.
$\overline{\text { (least } I)}$ — $-\overline{\text { (greatest } I)}$

In these series circuits below, 9.0 V batteries are wired to 0.50Ω light bulbs and/or 2.0Ω resistors. All circuit elements and wires are ideal.

32. Rank the circuit elements from least to greatest amount of current flowing through them. Indicate ties, if any.

33. Rank the circuit elements from lowest to highest potential drop. Indicate ties, if any.

In these parallel circuits below, 9.0 V batteries are wired to 0.50Ω light bulbs and/or 2.0Ω resistors. All circuit elements and wires are ideal.

34. Rank the circuit elements from lowest to highest potential drop. Indicate ties, if any.

$$
\overline{\text { (lowest } \Delta V)} \bar{\square} \overline{\text { (highest } \Delta V} \text {) }
$$

\qquad
\qquad
35. Rank the circuit elements from least to greatest amount of current flowing through them. Indicate ties, if any.
(least I)
\qquad
(greatest I)
$\left[\begin{array}{l}\text { electric field } \\ \text { electric potential } \\ \text { electric potential energy } \\ \text { power } \\ \text { charge } \\ \text { current } \\ \text { resistance } \\ \text { capacitance }\end{array}\right]$ is measured in units of:
(A) A (amperes).
(B) C (coulombs).
(C) F (farads).
(D) J (joules).
(E) N / C (newtons per coulomb).
(F) Ω (ohms).
(G) V (volts).
(H) W (watts).
37. The unit of
$\left[\begin{array}{l}\text { A (amperes) } \\ \mathrm{C} \text { (coulombs) } \\ \mathrm{F} \text { (farads) } \\ \mathrm{J} \text { (joules) } \\ \mathrm{N} / \mathrm{C} \text { (newtons per coulomb) } \\ \Omega \text { (ohms) } \\ \mathrm{V} \text { (volts) } \\ \mathrm{W} \text { (watts) }\end{array}\right]$ is a measure of:
(A) electric field.
(B) electric potential.
(C) electric potential energy.
(D) power.
(E) charge.
(F) current.
(G) resistance.
(H) capacitance.

Equations and constants:
$|k|=1.602 \times 10^{-19} \mathrm{C} ; k=8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}} ; \quad E P E=k \frac{q_{1} q_{2}}{r} ; \Delta E P E=q(\Delta V) ; V=k \frac{Q}{r}$.
$C=\frac{Q}{\Delta V} ; \quad C=\frac{A}{4 \pi k d} ; \quad \Delta V=-E d ; \quad E P E=\frac{1}{2} Q(\Delta V)$.
$I=\frac{\Delta q}{\Delta t} ; \quad I=\frac{\Delta V}{R} ; \quad P=I(\Delta V) ; \quad \sum I_{\text {in }}=\sum I_{\text {out }} ; \quad \sum_{\text {loop }} \Delta V_{\text {rises }}=\sum_{\text {loop }} \Delta V_{\text {drops }} ; \quad R_{\text {eq }}=\sum R_{i} ; \quad \frac{1}{R_{\text {eq }}}=\sum \frac{1}{R_{i}}$.

