A proton (+1.602×10⁻¹⁹ C) and an electron (-1.602×10⁻¹⁹ C) lie along the *x*-axis. The proton is at the origin, and the electron is at x = +0.0529 nm, approximating the ground state of a hydrogen atom.

- 1. The electric potential energy of these two charges is:
 - (A) negative.
 - (B) zero.
 - (C) positive.
 - (D) (Unsure/guessing/lost/help!)
- 2. If the separation distance between these two charges increases, the electric potential energy:
 - (A) decreases (becomes a smaller positive number).
 - (B) decreases (becomes a larger negative number).
 - (C) remains constant.
 - (D) increases (becomes a larger positive number).
 - (E) increases (becomes a smaller negative number).
 - (F) (Unsure/guessing/lost/help!)

Two protons (+1.602×10⁻¹⁹ C) along the *x*-axis, one at the origin, and the other at x = +1 fm, approximate the nucleus of a helium atom (with two neutrons, which can be ignored).

- 3. The electric potential energy of these two charges is:
 - (A) negative.
 - (B) zero.
 - (C) positive.
 - (D) (Unsure/guessing/lost/help!)
- 4. If the separation distance between the two protons increases, the electric potential energy:
 - (A) decreases (becomes a smaller positive number).
 - (B) decreases (becomes a larger negative number).
 - (C) remains constant.
 - (D) increases (becomes a larger positive number).
 - (E) increases (becomes a smaller negative number).
 - (F) (Unsure/guessing/lost/help!)

x

Θ

+0.0529 nm

p+

Ð

0

Consider two sets of two point charges that lie along the <i>x</i> -axis:	+4.0 nC ⊕	+1.0 nC	Y
+4.0 nC charge at the origin, and a +1.0 nC charge at x = +2.0 cm.	0	+2.0 cm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Two +2.0 nC charges,at the origin and at x = +2.0 cm.	+2.0 nC ⊕	+2.0 nC ⊕	Y
_	0	+2.0 cm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- **5**. The ______ have the greater amount of electric potential energy.
 - (A) +4.0 nC charge and +1.0 nC charge.
 - (B) two +2.0 nC charges.
 - (C) (There is a tie.)
 - (D) (Unsure/guessing/lost/help!)
- 6. Moving the _____ 1.0 cm closer would require more work by an external agent.
 - (A) +4.0 nC charge and +1.0 nC charge.
 - (B) two +2.0 nC charges.
 - (C) (There is a tie.)
 - (D) (Unsure/guessing/lost/help!)

Two point charges lie along the <i>x</i> -axis. A +5.0 μ C charge is at the origin, and a -2.0 μ C charge is at	+5.0 μC ⊕	–2.0 μC Θ	
x = +5.0 m.	0	+5.0 m	— x

- 7. Which process would require more work by an external agent?
 - (A) Holding the +5.0 μ C charge fixed, while moving the -2.0 μ C charge very far away.
 - (B) Holding the $-2.0 \,\mu\text{C}$ charge fixed, while moving the $+5.0 \,\mu\text{C}$ charge very far away.
 - (C) (There is a tie.)
 - (D) (Unsure/guessing/lost/help!)

8. In general, if the distance between any two charges with $\begin{bmatrix} \text{the same} \\ \text{opposite} \end{bmatrix}$ signs $\begin{bmatrix} \text{increases} \\ \text{decreases} \end{bmatrix}$,

the electric potential energy:

- (A) decreases (becomes a smaller positive number).
- (B) decreases (becomes a larger negative number).
- (C) remains constant.
- (D) increases (becomes a larger positive number).
- (E) increases (becomes a smaller negative number).
- (F) (Unsure/guessing/lost/help!)

Consider two sets of point charges fixed at the origin, and the locations (A)-(D) along the *x*-axis.

+5.0 nC ⊕	(A)	(B)
0	+1.0 cm	+2.0 cm
–5.0 nC ⊖	(C)	(D)
0	+1.0 cm	+2.0 cm

9. Rank the locations from lowest electric potential (greatest negative value) to highest electric potential (greatest positive value). Indicate ties, if any.

(lowest V)

(highest V)

Now consider the following processes:

Moving from location $(A) \rightarrow (B)$. Moving from location $(B) \rightarrow (A)$. Moving from location $(C) \rightarrow (D)$. Moving from location $(D) \rightarrow (C)$.

10. Identify the process(es) (if any) where the value of the electric potential would *decrease*.

Process(es):

11. Identify the process(es) (if any) where a *positive* test charge would experience a *decrease* in electric potential energy.

Positive test charge process(es):

12. Identify the process(es) (if any) where a *negative* test charge would experience a *decrease* in electric potential energy.

Negative test charge process(es):

Two different batteries are each connected to a capacitor (two parallel metal plates) that is initially uncharged. As a result, these plates of these capacitors become charged. Locations (A)-(D) are located between the charged capacitor plates.

Consider the following processes:

Moving from location $(A) \rightarrow (B)$. Moving from location $(B) \rightarrow (A)$. Moving from location $(C) \rightarrow (D)$. Moving from location $(D) \rightarrow (C)$.

13. Identify the process(es) (if any) where the value of the electric potential would *decrease*.

Process(es):

14. Identify the process(es) (if any) where a *positive* test charge would experience a *decrease* in electric potential energy.

Positive test charge process(es):

15. Identify the process(es) (if any) where a *negative* test charge would experience a *decrease* in electric potential energy.

Negative test charge process(es):

(C)

 $\Delta V = 1.5 V$

Three different parallel plate capacitors are each connected to identical 9.0 V batteries. Capacitors (A) and (B) have the same area; capacitors (B) and (C) have the same separation distance.

16. Rank the capacitors from lowest to highest capacitance value. Indicate ties, if any.

	(lowest	C)	
--	---------	----	--

(highest C)

17. Rank the capacitors from least to greatest amount of charge stored. Indicate ties, if any.

(least Q)

(most Q)

18. Rank the capacitors from least to greatest amount of electric potential energy stored. Indicate ties, if any.

(least *EPE*)

(most EPE)

19.	[Increasing] Decreasing]	the	separation gap area	of a parallel plate capacitor would its	S
	capacitance.				

- (A) increase.(B) decrease.
- (C) remain constant.
- (D) (Not enough information is given.)
- (E) (Unsure/guessing/lost/help!)

	[Increasing]		potential difference	
20 .	Decreasing	the charge on a capacitor is would its	capacitance	.
			energy stored	

- (A) increase.
- (B) decrease.
- (C) remain constant.
- (D) (Not enough information is given.)
- (E) (Unsure/guessing/lost/help!)

	[Increasing]		charge	
21.	Decreasing	the potential difference of a capacitor would its	capacitance	
			energy stored	

- (A) increase.
- (B) decrease.
- (C) remain constant.
- (D) (Not enough information is given.)
- (E) (Unsure/guessing/lost/help!)

Two parallel plate capacitors have the same area, and same separation gaps, but different amounts of charge.

- 22. The parallel plate capacitor with _____ charge has a greater potential difference _____ more energy stored _____.
 - (A) more.
 - (B) less.
 - (C) (There is a tie.)
 - (D) (Not enough information is given.)
 - (E) (Unsure/guessing/lost/help!)

(E) (Unsure/guessing/lost/help!)

Two parallel plate capacitors have the same area, and same separation gaps, but different potential differences, and each has an unknown amount of charge.

- 24. The parallel plate capacitor with the _____ potential difference has more charge ______energy stored.
 - (A) greater.
 - (B) lesser.
 - (C) (There is a tie.)
 - (D) (Not enough information is given.)
 - (E) (Unsure/guessing/lost/help!)

25. A parallel plate capacitor is charged to a set potential difference by a battery, which is then disconnected. Afterwards, the parallel plates are separated a little more.

	capacitance		
While the negative plates are concerning the	charge	:11.	
while the parallel plates are separating, the	potential difference	will.	
	energy stored		
(A) increase			

- (A) increase.
- (B) decrease.
- (C) remain constant.(D) (Not encouch information)
- (D) (Not enough information is given.)
- (E) (Unsure/guessing/lost/help!)
- **26**. A parallel plate capacitor is connected to a battery that supplies a constant potential difference. While the battery is still attached, the parallel plates are separated a little more.

	capacitance	
While the parallel plates are separating, the	charge	
	potential difference	will:
	energy stored	

- (A) increase.
- (B) decrease.
- (C) remain constant.
- (D) (Not enough information is given.)
- (E) (Unsure/guessing/lost/help!)

In these series circuits below, 9.0 V batteries and/or 1.5 V batteries, are wired to 0.50 Ω light bulbs and/or 2.0 Ω resistors. All circuit elements and wires are ideal.

27. Rank the circuits from lowest to highest equivalent emf. Indicate ties, if any.

(lowest *C*)

(highest *C*)

28. Rank the circuits from lowest to highest equivalent resistance. Indicate ties, if any.

(lowest R_{eq})

(highest R_{eq})

29. Rank the circuits from least to greatest amount of current flowing through it. Indicate ties, if any.

(least I)

(greatest 1)

16.03.11

In these series and parallel circuits below, 9.0 V batteries are wired to 0.50 Ω light bulbs and/or 2.0 Ω resistors. All circuit elements and wires are ideal.

30. Rank the circuits from lowest to highest equivalent resistance. Indicate ties, if any.

(lowest R_{eq})

(highest R_{eq})

31. Rank the circuits from least to greatest amount of current flowing through the *battery*. Indicate ties, if any.

(least I)

(greatest 1)

In these series circuits below, 9.0 V batteries are wired to 0.50 Ω light bulbs and/or 2.0 Ω resistors. All circuit elements and wires are ideal.

32. Rank the circuit elements from least to greatest amount of current flowing through them. Indicate ties, if any.

(least I)

(greatest 1)

33. Rank the circuit elements from lowest to highest potential drop. Indicate ties, if any.

(lowest ΔV)

(highest ΔV)

In these parallel circuits below, 9.0 V batteries are wired to 0.50 Ω light bulbs and/or 2.0 Ω resistors. All circuit elements and wires are ideal.

34. Rank the circuit elements from lowest to highest potential drop. Indicate ties, if any.

(lowest ΔV)

(highest ΔV)

(greatest 1)

35. Rank the circuit elements from least to greatest amount of current flowing through them. Indicate ties, if any.

(least I)

12

	electric fie	ld		
	electric pot	tential		
	electric pot	tential energy		
20	power			···· · · · · · · · · · · · · · · · · ·
30.	charge		is measured in	units of:
	current			
	resistance			
	capacitance	e _		
	(A) A (amp (B) C (course) (C) F (faration) (D) J (jourse) (E) N/C (minimized) (F) Ω (ohn (G) V (volimized) (H) W (waster)	peres). lombs). ds). es). newtons per co ns). ts). tts).	ulomb).	
37.	The unit of	$\begin{bmatrix} A \text{ (amperes)} \\ C \text{ (coulombs)} \\ F \text{ (farads)} \\ J \text{ (joules)} \\ N/C \text{ (newton)} \\ \Omega \text{ (ohms)} \\ V \text{ (volts)} \\ W \text{ (watts)} \end{bmatrix}$) s per coulomb)	is a measure of:
	 (A) electric (B) electric (C) electric (D) power. (E) charge (F) curren (G) resista (H) capaci 	c field. c potential. c potential ene t. nce. tance.	- rgy.	

Equations and constants:

 $\begin{aligned} |\mathbf{r}| &= 1.602 \times 10^{-19} \text{ C}; \ k = 8.99 \times 10^9 \ \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}; \ EPE = k \frac{q_1 q_2}{r}; \ \Delta EPE = q(\Delta V); \ V = k \frac{Q}{r}. \\ C &= \frac{Q}{\Delta V}; \ C = \frac{A}{4\pi k d}; \ \Delta V = -Ed; \ EPE = \frac{1}{2}Q(\Delta V). \\ I &= \frac{\Delta q}{\Delta t}; \ I = \frac{\Delta V}{R}; \ P = I(\Delta V); \ \sum I_{in} = \sum I_{out}; \ \sum_{loop} \Delta V_{rises} = \sum_{loop} \Delta V_{drops}; \ R_{eq} = \sum R_i; \ \frac{1}{R_{eq}} = \sum \frac{1}{R_i}. \end{aligned}$