Inter-Nuclear PE Graphs: Beyond Balancing Reaction Equations and Calculating Mass Defects in Analyzing Fusion, Fission, and α Decay

Outline

- Motivation for internuclear PE graphs
 - Connection with interatomic PE graphs
 - Characterizing certain nuclear processes

- Construction of internuclear PE graphs
 - General features
 - Exothermic fission example
 - Exothermic fusion example

- Analysis of nuclear processes
 - Fusion/fission initiation energy paradox
 - α decay versus "symmetric fission" paradox

- Conclusions
 - So what can internuclear PE graphs do?

Patrick M. Len
Department of Science, Math and Engineering, Cosumnes River College

http://www.waiferx.com/Physics/

Motivation for internuclear PE graphs

Connection with interatomic PE graphs

Interatomic PE graphs
- A.k.a. "Lennard-Jones" plots
- Characterizes atom-atom interactions
- PE gradient (slope) = force

- Similarly, an internuclear PE graph can be constructed to characterize nuclear-nuclear interactions

Emphasis on describing "what happens," not explaining "why?"

Two "toy" models can motivate the "why" of nuclear processes!

Fusion
Fission
α decay
β^+ (ϵ) decay
γ decay

"Different model approaches try to accentuate various aspects of nuclear structure in a simple and schematic way. No single model, as yet, is detailed enough to encompass all aspects of the nucleus..."

— K. Heyde,
Basic Ideas and Concepts in Nuclear Physics, 1994
• Construction of internuclear PE graphs
 General features

 Internuclear PE graphs
 • Characterizes nuclear-nuclear interactions
 • PE gradient (slope) = force
 Electric repulsion when separated
 Combination of strong nuclear attraction and electric repulsion when touching (net force attractive)

 Exothermic fusion example

 Exothermic fusion reaction:
 \(^3\text{He} + ^2\text{H} \rightarrow ^4\text{He} + n + [2.81 \times 10^{12} \text{ J}] \).

 Construction of internuclear PE graph:
 • Radii calculated from \(R = (1.2 \text{ fm}) A^{1/3} \).
 • Energy at scission point calculated from \(PE_{\text{sc}} \) of daughter nuclei
 • Assume straight-line segment during elongation

 What can this graph tell us?
 • PE gradient (slope) = net force between daughter nuclei during elongation or separation
 • Required initiation energy from neutron (overestimated, if tunneling effects are not included, and graph not smoothed at scission point)

• Analysis of nuclear processes
 Fusion/fission initiation energy paradox

 What can these graphs tell us?
 • Both graphs constructed in the same manner
 • Appreciation of relative distance and energy scales involved

 Common question asked by students:
 • Initiation energy for tritium-deuterium fusion is two orders of magnitude smaller than initiation energy for induced U-238 fission!
 • Yet why is fusion so much more difficult to initiate than fission?

 Fusion—two nuclei must come into contact
 • Both nuclei repel each other
 • Both nuclei move independent of each other in plasma phase

 Induced fission—neutron penetrates U-238 nucleus
 • No neutron-uranium repulsion
 • Neutron will eventually hit a U-238 nucleus in a solid phase critical mass sample
• Analysis of nuclear processes
 \(\alpha \) decay versus "symmetric fission" paradox

Common question asked by students:
• \(\alpha \) decay can be thought of as "asymmetric" fission, where less net energy released than fission into symmetric daughter nuclei.
• Yet why is \(\alpha \) decay observed rather than energetically favorable symmetric fission?

Compare internuclear **PE** graphs of both processes:
• Symmetric fission: more exothermic, but higher initiation energy (\(KE \) from external neutron required)
• \(\alpha \) decay: less exothermic, but much lower initiation energy ("self-initiating" with tunneling)

![Internuclear PE Graphs](image)

Visualization of relative distance and energy scales involved in different nuclear processes

• Uses already available information:
 Nuclear radius, calculated from nucleon number
 \(Q \)-values, calculated from mass decrements

• Emphasizes reversibility of exo/endo- thermic fission/fusion processes

• Quantifies net internuclear forces during elongation/contraction phases of fission/fusion

• Graphical comparison of initiation energies for:
 Induced versus spontaneous fission
 Stellar nucleosynthesis processes
 \(\alpha \) decay versus "symmetric" fission

• More complex effects can be introduced and incorporated (such as tunneling, smoother increase in internuclear \(PE \) due to increase in surface area during elongation)

• Conclusions
 So what can internuclear \(PE \) graphs do?

Conclusions
 Visualization of relative distance and energy scales involved in different nuclear processes

• Uses already available information:
 Nuclear radius, calculated from nucleon number
 \(Q \)-values, calculated from mass decrements

• Emphasizes reversibility of exo/endo- thermic fission/fusion processes

• Quantifies net internuclear forces during elongation/contraction phases of fission/fusion

• Graphical comparison of initiation energies for:
 Induced versus spontaneous fission
 Stellar nucleosynthesis processes
 \(\alpha \) decay versus "symmetric" fission

• More complex effects can be introduced and incorporated (such as tunneling, smoother increase in internuclear \(PE \) due to increase in surface area during elongation)