
Northern California American Association of Physics Teachers:  Spring 2003 Meeting               1

03.04.02

Inter-Nuclear PE Graphs:
Beyond Balancing Reaction
Equations and Calculating
Mass Defects in Analyzing
Fusion, Fission, and α Decay
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• Conclusions
So what can internuclear PE graphs do?
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• Motivation for internuclear PE graphs
Connection with interatomic PE graphs

Interatomic PE graphs
• A.k.a. "Lennard-Jones" plots
• Characterizes atom-atom interactions
• PE gradient (slope) = force
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• Similarly, an internuclear PE graph can be constructed to
characterize nuclear-nuclear interactions
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• Motivation for internuclear PE graphs
Characterizing certain nuclear processes

Usual textbook coverage of various nuclear processes:

Fusion
Fission
α decay
β± (ε) decay
γ decay

• Balancing reaction equations
• Exo/endo- energetics from mass decrements
• Exponential decay of unstable nuclei

Emphasis on describing "what happens," not explaining "why!"

Two "toy" models can motivate the "why" of nuclear processes!

Fusion
Fission
α decay

"Internuclear PE graphs" (discussed here)
N. Bohr and J. A. Wheeler,
Phys. Rev. 56, 426 (1939)

β± (ε) decay
γ decay

"Fermi-gas model" ("box model")
T. A. Moore, Six Ideas of Physics, Unit Q

"Different model approaches try to accentuate various
aspects of nuclear structure in a simple and schematic way.
No single model, as yet, is detailed enough to encompass
all aspects of the nucleus..."
—K. Heyde,
   Basic Ideas and Concepts in Nuclear Physics, 1994
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• Construction of internuclear PE graphs
General features

Internuclear PE graphs
• Characterizes nuclear-nuclear

interactions
• PE gradient (slope) = force

Electric repulsion when separated
Combination of strong nuclear attraction and electric

repulsion when touching (net force attractive)
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• Construction of internuclear PE graphs
Exothermic fission example

Induced exothermic fission reaction:
n U Rb Cs+2n+ 28.8 10  J92

235
37
93

55
141 ±12+ → + ×







.

Construction of internuclear PE graph:
• Radii calculated from R ≈ (1.3 fm) A1 3/ .
• Energy at scission point calculated from PEelec of daughter

nuclei
• Assume straight-line segment during elongation
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What can this graph tell us?
• PE gradient (slope) = net force between daughter nuclei

during elongation or separation
• Required initiation energy from neutron (overestimated, if

tunneling effects are not included, and graph not smoothed
at scission point)
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• Construction of internuclear PE graphs
Exothermic fusion example

Exothermic fusion reaction:

1
3

1
2

2
4 ±12H H He n+ 2.81 10  J+ → + ×







.

Construction of internuclear PE graph:
• Radii calculated from R ≈ (1.2 fm) A1 3/ .
• Energy at fusion point calculated from PEelec of D and T nuclei
• Assume straight-line segment during contraction
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What can this graph tell us?
• PE gradient (slope) = net force between daughter nuclei

during elongation or separation
• Required initiation energy (comparison with fission later)
• Relative initiation energies for various nucleosynthesis

processes can be compared
• In general:

exothermic fusion = endothermic fission
exothermic fission = endothermic fusion
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• Analysis of nuclear processes
Fusion/fission initiation energy paradox
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What can these graphs tell us?
• Both graphs constructed in the same manner
• Appreciation of relative distance and energy scales involved

Common question asked by students:
• Initiation energy for tritium-deuterium fusion is two orders

of magnitude smaller than initiation energy for induced
U-238 fission!

• Yet why is fusion so much more difficult to initiate than fission?

Fusion—two nuclei must come into contact
• Both nuclei repel each other
• Both nuclei move independent of each other in plasma phase

Induced fission—neutron penetrates U-238 nucleus
• No neutron-uranium repulsion
• Neutron will eventually hit a U-238 nucleus in a solid phase

critical mass sample
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• Analysis of nuclear processes
α decay versus "symmetric fission" paradox

Common question asked by students:
• α decay can be thought of as "asymmetric" fission, where less

net energy released than fission into symmetric daughter
nuclei

• Yet why is α decay observed rather than energetically
favorable symmetric fission?

Compare internuclear PE graphs of both processes:
• Symmetric fission: more exothermic, but higher initiation

energy (KE from external neutron required)
• α decay: less exothermic, but much lower initiation energy

("self-initiating" with tunneling)
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• Conclusions
So what can internuclear PE graphs do?

Visualization of relative distance and energy scales involved in
different nuclear processes

• Uses already available information:
Nuclear radius, calculated from nucleon number
Q-values, calculated from mass decrements

• Emphasizes reversibility of exo/endo- thermic fission/fusion
processes

• Quantifies net internuclear forces during
elongation/contraction phases of fission/fusion

• Graphical comparison of initiation energies for:
Induced versus spontaneous fission
Stellar nucleosynthesis processes
α decay versus "symmetric" fission

• More complex effects can be introduced and incorporated
(such as tunneling, smoother increase in internuclear PE
due to increase in surface area during elongation)


